Fuzzy Logic Adaptive Min-Max Model (Flamm) for Pathloss Prediction in Mobile Communications Network
نویسندگان
چکیده
منابع مشابه
Intuitionistic fuzzy logic for adaptive energy efficient routing in mobile ad-hoc networks
In recent years, mobile ad-hoc networks have been used widely due to advances in wireless technology. These networks are formed in any environment that is needed without a fixed infrastructure or centralized management. Mobile ad-hoc networks have some characteristics and advantages such as wireless medium access, multi-hop routing, low cost development, dynamic topology and etc. In these netwo...
متن کاملAgglomerative Learning Algorithms for General Fuzzy Min-Max Neural Network
In this paper two agglomerative learning algorithms based on new similarity measures defined for hyperbox fuzzy sets are proposed. They are presented in a context of clustering and classification problems tackled using a general fuzzy min-max (GFMM) neural network. The proposed agglomerative schemes have shown robust behaviour in presence of noise and outliers and insensitivity to the order of ...
متن کاملGeneral fuzzy min-max neural network for clustering and classification
This paper describes a general fuzzy min-max (GFMM) neural network which is a generalization and extension of the fuzzy min-max clustering and classification algorithms developed by Simpson. The GFMM method combines the supervised and unsupervised learning within a single training algorithm. The fusion of clustering and classification resulted in an algorithm that can be used as pure clustering...
متن کاملFuzzy Min-Max Neural Network for Image Segmentation
In this work a new fuzzy min-max neural network for color image segmentation, called FMMIS neural network, is proposed. The FMMIS algorithm uses seed pixels to grow hyperboxes, and a criterion of homogeneity for controlling the size of these hyperboxes. The algorithm has been implemented for 2D images and tested on the segmentation of live and dead knots in images of wood boards. On a test set,...
متن کاملAdaptive Color Image Segmentation Using Fuzzy Min-Max Clustering
This paper proposes a novel system for color image segmentation called “Adaptive color image segmentation using fuzzy min-max clustering (ACISFMC)”. The present work is an application of Simpson’s fuzzy min-max neural network (FMMN) clustering algorithm. ACISFMC uses a multilayer perceptron (MLP) like network which perform color image segmentation using multilevel thresholding. Threshold values...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2016
ISSN: 0975-8887
DOI: 10.5120/ijca2016911918